On the Futaki Invariants of Complete Intersections
نویسنده
چکیده
In 1983, Futaki [2] introduced his invariants which generalize the obstruction of Kazdan-Warner to prescribe Gauss curvature on S. The Futaki invariants are defined for any compact Kähler manifold with positive first Chern class that has nontrivial holomorphic vector fields. Their vanishing are necessary conditions to the existence of Kähler-Einstein metric on the underlying manifold. Let M be a compact Kähler manifold with positive first Chern class c1(M) > 0. Choosing an arbitrary positive (1, 1) form ω in c1(M) as a Kähler metric on M , we can find a smooth function f on M , determined up to a constant, such that the following
منابع مشابه
Bando-futaki Invariants on Hypersurfaces
In 1983, Futaki introduced the well-known Futaki invariant [6], which is an obstacle to the existence of Kähler-Einstein metrics on a compact complex manifold with positive first Chern class. Other generalizations of the Futaki invariant were introduced later, all of which are obstructions to certain geometric structures. The Calabi-Futaki invariant [3] is an obstruction to the existence of Käh...
متن کاملThe Genus 0 Gromov-Witten Invariants of Projective Complete Intersections
We describe the structure of mirror formulas for genus 0 Gromov-Witten invariants of projective complete intersections with any number of marked points and provide an explicit algorithm for obtaining the relevant structure coefficients. As an application, we give explicit closed formulas for the genus 0 Gromov-Witten invariants of Calabi-Yau complete intersections with 3 and 4 constraints. The ...
متن کاملIntersections of Tautological Classes on Blowups of Moduli Spaces of Genus-One Curves
We give two recursions for computing top intersections of tautological classes on blowups of moduli spaces of genus-one curves. One of these recursions is analogous to the well-known string equation. As shown in previous papers, these numbers are useful for computing genusone enumerative invariants of projective spaces and Gromov-Witten invariants of complete intersections.
متن کاملThe Genus One Gromov-Witten Invariants of Calabi-Yau Complete Intersections
We obtain mirror formulas for the genus 1 Gromov-Witten invariants of projective Calabi-Yau complete intersections. We follow the approach previously used for projective hypersurfaces by extending the scope of its algebraic results; there is little change in the geometric aspects. As an application, we check the genus 1 BPS integrality predictions in low degrees for all projective complete inte...
متن کاملReal Gromov-Witten Theory in All Genera and Real Enumerative Geometry: Computation
The first part of this work constructs positive-genus real Gromov-Witten invariants of realorientable symplectic manifolds of odd “complex” dimensions; the second part studies the orientations on the moduli spaces of real maps used in constructing these invariants. The present paper applies the results of the latter to obtain quantitative and qualitative conclusions about the invariants defined...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999